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D13.5: THE VALUE OF MEASUREMENTS IN THE REDUCTION IN GLOBAL 

MODEL UNCERTAINTY 

 

13.5.1 INTRODUCTION 

 

This report describes how ACTRIS measurements of aerosol microphysical properties help to reduce the 

uncertainty in a global aerosol-climate model (HadGEM3-UKCA). We apply a rigorous statistical 

methodology in which the uncertainty in the model is calculated using around 1 million ‘model variants’ 

that sample 26 uncertainties in aerosol emissions and processes. We then quantify the reduction in model 

uncertainty achieved using only the model variants that produce plausible results when compared to the 

ACTRIS measurements. The model variants were generated from a perturbed parameter ensemble of the 

model, followed by model emulation, Monte Carlo sampling and history matching. We show the ACTRIS 

measurements enable a substantial reduction in model uncertainty. 

 

 

13.5.2 METHODOLOGY 

 

13.5.2.1 Sampling model uncertainty 

 

Our approach is shown schematically in Figure 1. We begin with a large set of model variants produced by 

adjusting multiple uncertain model input parameters in the HadGEM-UKCA climate model. These model 

variants (parameter combinations) define the ‘prior’ model uncertainty (which can be defined by a pdf of 

model output), which we then constrain by identifying variants that produce plausible outputs compared to 

ACTRIS observations. Model variants that produce results outside of the observational uncertainty range 

are considered implausible and are rejected. Likewise, the forcings that these model variants calculate are 

also rejected, which therefore enables a direct link to be established between the constraint of aerosol 

properties and the constraint of aerosol forcing. 

 

We define observational constraint as finding the full set of model variants that are plausible when compared 

against observations. We can therefore estimate the prior (unconstrained) and remaining (observationally 

constrained) uncertainty range of the model. This approach is different to model tuning, which produces 

only one result on the right side of Fig 1 with no information about uncertainty. However, the process of 

adjusting the model to agree better is with observations is often misleadingly called constraint. 
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Figure 1. Schematic of the methodology for observational constraint of parametric model uncertainty. From (Johnson 

et al., 2018) 

 

 

Most observational constraint studies are severely limited by the very small number of models used, which 

makes it impossible to reach robust statistical conclusions about model uncertainty (Carslaw et al., 2018). 

In a multi-model ensemble such as in Aerocom the number of models is often about ten to twenty, and in 

model tuning perhaps only a few dozen parts of parameter space are explored. To get around this problem 

we build emulators that enable model outputs to be generated for millions of model parameter combinations 

(Lee et al., 2011, 2013). The large sample size allows us to robustly relate the uncertainty on the left side of 

Fig. 1 (in the form of a pdf) to the observationally constrained uncertainty on the right side.   

 

The methodology is described in detail in three papers (Johnson et al., 2018; Regayre et al., 2018; Yoshioka 

et al., 2018). In brief, the steps involved are (Figure 1): 

 

1. A perturbed parameter ensemble (PPE) of the HadGEM3-UKCA aerosol-chemistry-climate model was 

created. In this ensemble combinations of 26 aerosol emissions and processes (parameters) were perturbed 

simultaneously. These causes of model uncertainty were identified as important for aerosols and aerosol-

cloud forcing in our previous research (Carslaw et al., 2013; Lee et al., 2013; Regayre et al., 2014, 2015). 

The PPE consists of two sets of 235 single-year simulations which differ only in the anthropogenic aerosol 

emissions prescribed (1850 and 2008). The experiment was designed to fill the 26-dimensional parameter 

space optimally using the 235 parameter combinations.  

 

2. Emulators were built using data from the PPE (step 1). These emulators define (within quantifiable 

uncertainty) how aerosol properties and aerosol radiative forcing vary over the 26-dimensional parameter 

space. We validate each emulator’s ability to reproduce model output, then use them to sample the 1 million 

Monte Carlo points from the parameter space to produce the set of model variants on the left side of Fig 1. 
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This step is essential because, with 26 dimensions of model uncertainty, the 235 PPE simulations are 

sparsely distributed. Filling the space more densely using output from global climate models is 

computationally expensive. However, emulators allow us to densely sample of the multi-dimensional 

parameter space and conduct robust statistical analyses. 

 

3. We identify which of the 1 million model variants are consistent with the ACTRIS measurements within 

the uncertainty ranges of the individual measurements. This reduced set of variants defines the ways in 

which uncertain parameters can be combined to reproduce multiple observations and is equivalent to 

identifying thousands of equally plausible tuned HadGEM3-UKCA models. This procedure is often called 

‘history matching’ or ‘pre-calibration’ (Craig et al., 1997; Edwards, Cameron and Rougier, 2011; 

Williamson et al., 2013; Lee, Reddington and Carslaw, 2016; Andrianakis et al., 2017). 

 

4. The reduction in aerosol radiative forcing uncertainty is quantified by comparing the uncertainty from 

the original sample of 1 million model variants with the uncertainty in the observationally plausible variants.   

 

13.5.2.2 Constraint methodology 

 

The constraint approach involves ruling out model variants (parameter combinations from the emulator) 

that are judged as implausible against measurements. We do this by calculating an implausibility metric (I) 

for each of the 1 million variants (x; (Williamson et al., 2013; McNeall et al., 2016; Andrianakis et al., 

2017)), which weights the difference between the model and observations by the uncertainties in both: 

 

 
𝐼(𝑥) =  

| 𝑧 − 𝐸[𝜂(𝑥)] |

√[𝑉𝑎𝑟(𝜙(𝑥)) + 𝑉𝑎𝑟(𝜖)]

 ,   
(1) 

where 𝑧 is the measurement and 𝐸[𝜂(𝑥)] is the estimate of model output calculated using the emulator 

𝜂(𝑥). In the denominator 𝑉𝑎𝑟(𝜙(𝑥)) is the variance in the emulator prediction and 𝑉𝑎𝑟(𝜖) is the variance 

in the measurement. In essence, if the confidence in the measurements and emulator is high (the 

denominator is small) then we can be confident that the difference between the model and measurement in 

the numerator is meaningful in terms of model skill, so a large model-measurement difference can be used 

to rule out a part of parameter space represented by the variant x (the implausibility is high). However, if 

the measurement uncertainty is large or the emulator is a poor representation of the model (has large 

uncertainty), then we cannot be confident that the variant is producing implausible results, so we retain that 

variant (the implausibility is small). The emulator uncertainty is known at all points in parameter space, so 

is used directly in the implausibility metric calculation. 

 

𝑉𝑎𝑟(𝜖) has four additive components: 

 

 𝑉𝑎𝑟(𝜖) = 𝑉𝑎𝑟(𝜖𝑀𝐸𝐴𝑆) + 𝑉𝑎𝑟(𝜖𝐼𝐴𝑉) + 𝑉𝑎𝑟(𝜖𝑆𝑃) + 𝑉𝑎𝑟(𝜖𝑇𝐸𝑀𝑃)  (2) 

which are:  

1. Measurement (instrument) uncertainty (𝑉𝑎𝑟(𝜖𝑀𝐸𝐴𝑆)) 

2. Inter-annual variability in aerosol properties (𝑉𝑎𝑟(𝜖𝐼𝐴𝑉)) accounting for the fact that we may wish 

to match observations and the model for the correct calendar month but not for the correct year. 
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3. Spatial co-location uncertainty (𝑉𝑎𝑟(𝜖𝑆𝑃)) accounting for the potentially large spatial variability 

of point measurements below the grid scale of the model (Schutgens et al., 2016, 2017). 

4. Temporal co-location uncertainty component (𝑉𝑎𝑟(𝜖𝑇𝐸𝑀𝑃)) accounting for the fact that the 

temporal sampling of an observation may not match to the temporal sampling of the model (e.g. a 

ship track through the grid-box over a short time period which is compared with a monthly-mean 

model value (Schutgens et al., 2017).  

 

We call 𝜖𝐼𝐴𝑉 + 𝜖𝑆𝑃 + 𝜖𝑇𝐸𝑀𝑃 the model-measurement representation error, or representation error for short 

(Reddington et al., 2017) because it defines the error associated with how well the measured aerosol 

property is represented in the model. 

 

A challenge with this semi-automatic constraint procedure, as with any model-measurement comparison, is 

that we cannot a priori account for model structural error: i.e., the model-measurement error may be very 

large because the model lacks essential processes and therefore we should not expect the measured values 

to lie within the range produced by sampling the model parameters. To account for this possibility we 

include a filtering step in which we examine the mean implausibility (across the 1 million model variants) 

for each measurement in each month and decide whether very high values may indicate structural errors. 

These measurements are then removed from the analysis and flagged for future investigation. We also allow 

a defined number (or percentage) of observations (tolerance, T) to exceed a defined implausibility threshold 

(). For example, we might rule out a model variant if it has implausibility metrics larger than 3 for more 

than T =20% of the observations (i.e., bias is 3 times the expected error). Values of T and are subjective, 

and were chosen for each observational constraint according to the relative effect on the aerosol properties 

being constrained. 

 

For all aerosol properties we assume a measurement/instrument uncertainty of 10%, a spatial co-location 

uncertainty of 20%, and a temporal sampling uncertainty of 10% based on typical values (Schutgens et al., 

2016, 2017; Reddington et al., 2017). The sampling uncertainties can vary across the different observed 

aerosol properties as well as spatially and temporally, but we have not attempted to account for these 

variations here. The inter-annual uncertainty was estimated based on a 30-year simulation and is shown for 

a range of aerosol properties in Figure 3. 

 

In addition to the implausibility metric we use the normalized mean absolute error factor (NMAEF; 

(Gustafson and Yu, 2012) to quantitatively compare the average model output to measurements. The 

NMAEF metric is defined as: 

 

𝑁𝑀𝐴𝐸𝐹 =  
∑| A(i)−B(i)|

∑ A(i)
 ,     (3) 

where A is the observation and B is the model variant in the case where the model overestimates the 

measurement. If the model underestimates the measurement A is the model variant and B the observation. 

 

The NMAEFs tells us the factor by which the mean unconstrained sample value over/under predicts the 

measurements. We multiply the NMAEF by -1 in cases where the mean model value underpredicts the 

measurement at each location/month combination on average so as to understand the general tendency for 

over- or under-prediction. Large absolute NMAEF values suggest substantial over/underprediction. 
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However, the NMAEFs alone do not provide a comprehensive insight into the degree of model-

measurement agreement. For example, large positive NMAEF values can result from comparing near-zero 

measurement values to relatively low model values. Relative to comparisons in other locations and/or 

months, the large NMAEF case may actually provide a reasonable model-observation comparison. 

Furthermore, the NMAEFs do not account for the sources of uncertainty important for model/measurement 

comparison outlined above. Hence, we interpret the NMAEFs alongside the implausibility metrics. 

 

Figure 2. The relative standard deviation of July-mean aerosol properties over a 30-year period, used in the estimation 

of the inter-annual variability component of the implausibility measure, 𝜖𝐼𝐴𝑉. This relative standard deviation was 

generated from the analysis of a UKCA hindcast simulation over the period of 1980-2009. Values refer to surface-

level PM2.5, N50, OC and CCN. 

  

 

13.5.2.3 Measurements 

 

ACTRIS particle number size distribution measurements were used to calculate monthly mean 

concentrations of particles larger than 50 nm and 3 nm diameter (N50 and N3). Individual measurements 

with missing data in some bins were removed from the analysis. Averaging over multiple years allows us 

to use all of the remaining measurement data in the constraint process. Particle concentrations were averaged 

over multiple years (as available on the EBAS website) within each month at each location. In cases where 

two or more sites are within the same model gridbox the data from each site was given equal weighting 
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when calculating the multi-year monthly mean values. We account for inter-annual variability in the 

calculation of our implausibility metrics (Figure 2). The ACTRIS measurement used for model constraint 

are summarized in table 1.  

 

Index Station name 
Latitude 

site  

Latitude 

model 

Longitude 

site 

Longitude 

model 
Filtered dataset months used 

1 BEO Moussala 42.17 42.5 23.58 22.5 Jan - Dec  

2 
Schauinsland and 

Jungfraujoch 

47.91 and 

46.55 
47.5 

7.91 and 

7.99 
7.5 Jan – Dec 

3 
Hohenpeissenberg 

and Schneefernerhaus 

47.8 and 

47.42 
47.5 

11.01 and 

10.98 
11.25 Jan – Dec 

4 Melpitz 51.53 52.5 12.93 11.25 Jan – Dec 

5 Hyytiala 61.85 62.5 24.28 11.25 Jan – Dec 

6 
Pallas 

(Sammaltunturi) 
68.0 67.5 24.14 22.5 Jan – Dec 

7 Gual Pahari 28.42 27.5 77.15 78.75 Jan – Dec 

8 Mt Cimone 44.18 45 10.7 11.25 Jan – Dec 

9 Preila 55.38 55 21.03 22.5 Jan – Mar;  Jul – Nov  

10 Birkenes 58.38 57.5 8.25 7.5 Jan – Dec 

11 
Zeppelin Mountain 

(Ny-Alesund) 
78.91 80 11.89 11.25 Jan – Dec 

12 Troll -72.01 -72.5 2.53 3.75 Jan – Dec 

13 Aspvreten 58.8 60 17.38 18.75 Jan – Dec 

Table 1: Number concentration measurement locations used in the analysis. Longitude and latitudes of sites, as well as 

the closest longitude and latitude at the resolution of our model data are provided. Finally we indicate the months for 

which data is available after filtering missing values.  

 

 

13.5.3 RESULTS 

13.5.3.1 Model-measurement comparison 

In tables 2 and 3 we present the mean implausibility and NMAEF for N3 and N50 respectively at each of 

the ACTRIS measurement sites used in our analysis.  

 

At several sites such as Hyytiala, Pallas, Gual Pahari, Mt Cimone and Aspvreten the mean N3 and N50 of 

the sample of model variants compares very well with observations across the year. At the Birkenes, Mt 

Cimone and Zeppelin Mountain sites there is excellent model-measurement agreement for much of the year. 

However, at these sites there are anomalous months where either N3 or N50 compares poorly (the mean 

implausibility is larger than around 3). In the case of Mt Cimone and Zeppelin Mountain in the final months 

of the year the comparison is so poor (the lower credible bound of the sample of implausibility metrics 

exceeds I=1) that the observations in these months are removed from the constraint process. These results 

suggest there is some structural deficiency in the model that needs to be addressed (missing particle 

nucleation events/processes) and/or some form of corruption in the data that was undetected by our data 

screening process. 
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The model-measurement N3 comparison is much better (lower mean implausibility) in winter than summer 

months at many of the sites (BEO Moussala, Schauinsland and Jungfraujoch,  Hohenpeissenberg and 

Schneefernerhaus,  Melpitz, Hyytiala, Mt Cimone, Birkenes and Aspvreten). However, there is little 

seasonality in the N50 implausibility metrics at these sites. Figure (Histograms) shows the pdfs of N3 and 

N50 for January and July from the unconstrained sample of one million model variants, as well as pdfs from 

the subsample constrained to match all measurements of N3 and N50. N3 concentrations in July in the 

unconstrained sample are far larger than N3 concentrations in January and N50 concentrations in both 

months. The seasonality in N3 implausibility metrics can partly be explained by the fact that the 

implausibility metrics scale with the magnitude of the measurements. 

 

The NMAEFs are typically positive for both N3 and N50 at most sites, but are much larger for N3. These 

results suggest that in general the model over predicts both N3 and N50 measurements, although the model-

measurement agreement is better for N50. Despite a tendency for over prediction of aerosol concentrations, 

the mean implausibility values are generally small (less than around 3; See Fig. 3). This suggests that the 

differences in model and measurement concentrations are relatively small compared to the variance terms 

in the denominator of equation (1). 

 

For several winter-spring months at the Troll site the measured N3 and N50 concentrations do not agree 

with the range of modelled values and the measurements are removed from the constraint process. Troll is 

the only Southern Hemisphere measurement site used in this analysis. The model also compares poorly with 

N50 concentrations at this site, with the distribution of implausibility across the model variants being so 

large the observations are removed from the constraint process (by definition). In February (SH summer) 

the distribution of implausibility for Troll is tightly centered around a large mean implausibility – i.e., there 

is considerable disagreement between the measurements at this site and the majority of the model variants. 

In July the mean implausibility metric at Troll (2.78) is relatively high compared to other sites, but parts of 

parameter space are in reasonable agreement with the measurements (the distribution covers I=1, the cutoff 

value for using the measurement data). The consistently negative NMAEFs for N3 and N50 at Troll suggest 

that the model underpredicts aerosol concentrations in remote marine locations. Aerosol concentrations in 

remote locations are known to be affected by different aerosol emission, deposition and process parameters 

than densely populated Northern Hemisphere locations (Regayre et al., 2015). If the model is structurally 

deficient in its capacity to simulate remote aerosol concentrations, it may be that a source of natural aerosols 

and/or aerosol growth processes are missing from the model. 
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Station J F M A M J J A S O N D 

BEO Moussala 0.55 

(5.6) 

0.74 

(6.5) 

1.64 

(10.9) 

2.51 

(10.2) 

3.25 

(14.7) 

3.07 

(12.1) 

4.66 

(16.1) 

3.84 

(10.5) 

2.70 

(10.8) 

1.96 

(14.4) 

0.79 

(12.6) 

0.50 

(5.9) 

Schauinsland and 

Jungfraujoch 

0.66 

(2.9) 

1.06 

(4.2) 

1.64 

(4.6) 

2.44 

(4.7) 

2.89 

(5.7) 

2.64 

(3.6) 

3.12 

(4.2) 

3.16 

(4.6) 

2.28 

(3.8) 

1.80 

(3.3) 

0.73 

(1.8) 

0.67 

(2.6) 

Hohenpeissenberg and 

Schneefernerhaus 

0.64 
(1.2) 

1.16 
(1.9) 

1.53 
(1.9) 

2.17 
(3.5) 

3.26 
(5.3) 

2.41 
(3.1) 

2.72 
(3.4) 

2.96 
(4.1) 

2.42 
(3.7) 

2.15 
(3.3) 

0.88 
(1.7) 

0.79 
(2.2) 

Melpitz 0.99 
(-1.2) 

0.70 
(-0.7) 

0.64 
(-0.5) 

1.03 
(1.0) 

2.04 
(2.0) 

3.22 
(2.4) 

2.82 
(2.1) 

2.67 
(1.9) 

1.26 
(0.9) 

0.70 
(-0.5) 

0.72 
(-0.8) 

0.77 
(-0.9) 

Hyytiala 0.71 

(-0.8) 

1.92 

(-1.8) 

1.50 

(-1.3) 

0.84 

(-0.5) 

1.68 

(0.8) 

2.10 

(1.9) 

1.88 

(1.6) 

3.02 

(-1.5) 

0.91 

(-0.4) 

0.82 

(-0.6) 

0.69 

(-0.7) 

2.30 

(-2.5) 

Pallas (Sammaltunturi) 0.89 

(1.1) 

0.80 

(0.7) 

0.62 

(0.6) 

0.59 

(-0.6) 

0.75 

(0.6) 

1.02 

(0.9) 

0.79 

(-0.5) 

1.04 

(-0.7) 

0.85 

(-0.7) 

0.71 

(-0.6) 

0.71 

(-0.6) 

0.79 

(1.0) 

Gual Pahari 0.95 

(0.6) 

0.92 

(-0.5) 

0.91 

(-0.5) 

0.98 

(-0.5) 

1.14 

(1.1) 

1.32 

(-0.7) 

1.15 

(-0.5) 

1.14 

(0.8) 

1.14 

(-0.5) 

1.17 

(-0.6) 

1.09 

(-0.6) 

0.94 

(-0.5) 

Mt Cimone 0.66 

(1.1) 

0.87 

(2.3) 

1.34 

(2.5) 

2.28 

(4.4) 

2.71 

(5.4) 

2.36 

(4.2) 

2.60 

(4.8) 

2.74 

(7.2) 

2.30 

(4.3) 

1.77 

(5.1) 

4.91 

(-6.2) 

5.91 

(-9.9) 

Preila 0.87 
(-1.5) 

0.96 
(-1.7) 

0.64 
(-0.8) 

NA NA NA 1.78 
(1.2) 

2.03 
(1.4) 

1.41 
(1.9) 

1.40 
(-1.4) 

1.92 
(-3.2) 

NA 

Birkenes 0.35 
(0.8) 

0.33 
(1.1) 

0.37 
(0.5) 

0.76 
(1.6) 

2.48 
(8.0) 

3.56 
(14.4) 

2.70 
(7.3) 

2.63 
(4.9) 

1.35 
(2.2) 

0.65 
(0.8) 

0.33 
(1.0) 

0.39 
(0.8) 

Zeppelin Mountain (Ny-

Alesund) 

1.19 

(0.6) 

0.82 

(0.5) 

1.12 

(-0.5) 

0.70 

(-0.5) 

0.67 

(-0.3) 

0.72 

(-0.6) 

1.01 

(-0.9) 

0.94 

(-0.6) 

0.45 

(0.4) 

0.98 

(0.9) 

0.82 

(0.5) 

7.70 

(-25.2) 

Troll 3.45 

(-1.9) 

5.15 

(-3.8) 

5.39 

(-3.5) 

5.01 

(-3.3) 

3.78 

(-1.8) 

2.51 

(-1.0) 

2.61 

(-1.3) 

1.78 

(-0.9) 

2.50 

(-1.5) 

4.29 

(-2.3) 

3.37 

(-1.6) 

1.19 

(-0.6) 

Aspvreten 0.70 

(-0.7) 

0.73 

(-0.6) 

0.78 

(-0.5) 

0.95 

(0.7) 

1.31 

(1.0) 

2.19 

(2.1) 

1.21 

(1.0) 

1.23 

(0.9) 

1.03 

(0.5) 

0.86 

(0.5) 

0.75 

(-0.6) 

0.68 

(0.7) 

Table 2: Unconstrained sample mean implausibility metrics and NMAEFs (in brackets) for N3. Implausibility metrics 

are shaded red for cases where the lower credible bound of implausibility metrics in the unconstrained sample is larger 

than I=1. 
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Station J F M A M J J A S O N D 

BEO Moussala 3.13 

(4.0) 

2.98 

(4.8) 

3.00 

(2.9) 

2.17 

(1.1) 

2.72 

(2.0) 

2.82 

(2.3) 

2.37 

(1.2) 

1.66 

(0.7) 

2.09 

(1.3) 

2.91 

(3.5) 

3.16 

(7.4) 

2.88 

(3.5) 

Schauinsland and 

Jungfraujoch 

2.52 

(3.6) 

2.95 

(4.6) 

2.61 

(2.5) 

2.66 

(1.4) 

3.06 

(2.2) 

2.59 

(1.3) 

2.92 

(1.6) 

3.00 

(1.7) 

2.77 

(1.7) 

2.91 

(2.2) 

2.36 

(2.1) 

2.78 

(3.1) 

Hohenpeissenberg and 

Schneefernerhaus 

2.33 
(1.7) 

2.35 
(1.6) 

1.61 
(0.7) 

2.15 
(0.9) 

2.53 
(1.3) 

2.46 
(1.3) 

2.35 
(1.3) 

2.76 
(1.6) 

2.64 
(1.5) 

2.73 
(1.7) 

2.56 
(2.0) 

3.17 
(2.8) 

Melpitz 1.77 
(-0.6) 

1.76 
(0.6) 

1.68 
(0.5) 

1.87 
(0.8) 

2.18 
(0.9) 

2.28 
(0.8) 

2.32 
(0.8) 

2.03 
(0.7) 

1.69 
(0.6) 

1.78 
(0.7) 

2.13 
(0.8) 

1.98 
(0.7) 

Hyytiala 1.27 

(0.7) 

1.57 

(-0.6) 

1.91 

(-0.6) 

1.56 

(0.5) 

1.50 

(0.5) 

1.48 

(0.6) 

1.13 

(0.5) 

0.95 

(0.4) 

1.22 

(0.4) 

1.39 

(0.5) 

1.47 

(0.6) 

1.54 

(0.8) 

Pallas (Sammaltunturi) 1.63 

(1.4) 

1.41 

(0.7) 

1.48 

(0.7) 

1.41 

(-0.5) 

1.24 

(-0.5) 

0.99 

(0.4) 

0.65 

(-0.3) 

1.34 

(-0.7) 

0.91 

(-0.4) 

1.02 

(0.5) 

1.57 

(1.0) 

1.68 

(1.8) 

Gual Pahari 1.49 

(0.5) 

1.40 

(0.6) 

1.38 

(0.6) 

1.49 

(0.7) 

1.73 

(0.8) 

1.72 

(0.6) 

1.78 

(-0.5) 

1.70 

(0.6) 

1.72 

(0.7) 

1.68 

(0.6) 

1.47 

(0.5) 

1.53 

(0.5) 

Mt Cimone 1.83 

(1.0) 

2.40 

(2.3) 

2.19 

(1.4) 

2.37 

(1.2) 

2.66 

(1.6) 

2.57 

(1.7) 

2.12 

(1.4) 

2.64 

(2.5) 

1.95 

(0.9) 

2.85 

(2.9) 

2.63 

(-0.9) 

3.93 

(-1.6) 

Preila 3.38 
(-1.8) 

4.20 
(-2.2) 

2.56 
(-1.1) 

NA 
 

NA 
 

NA 
 

2.44 
(-0.8) 

1.40 
(0.6) 

1.06 
(0.4) 

3.28 
(-1.5) 

4.38 
(-2.4) 

NA 
 

Birkenes 1.43 
(-0.6) 

1.29 
(0.7) 

2.62 
(-0.9) 

1.63 
(0.8) 

2.74 
(1.9) 

2.39 
(1.3) 

2.21 
(1.3) 

0.98 
(0.3) 

0.88 
(-0.3) 

2.62 
(-1.0) 

1.41 
(0.9) 

1.43 
(-0.6) 

Zeppelin Mountain (Ny-

Alesund) 

1.41 

(0.7) 

0.88 

(0.5) 

1.42 

(-0.6) 

1.50 

(-0.6) 

1.11 

(-0.4) 

2.27 

(-1.3) 

1.98 

(-1.3) 

0.98 

(-0.5) 

0.88 

(-0.5) 

1.24 

(1.1) 

0.87 

(0.5) 

3.99 

(-2.8) 

Troll 6.64 

(-5.7) 

6.98 

(-7.6) 

6.44 

(-4.9) 

5.62 

(-3.3) 

4.23 

(-1.8) 

3.44 

(-1.1) 

2.78 

(-1.0) 

2.85 

(-1.2) 

3.00 

(-1.0) 

4.73 

(-2.5) 

6.11 

(-4.1) 

6.65 

(-6.4) 

Aspvreten 1.22 

(0.6) 

1.45 

(-0.6) 

1.49 

(-0.6) 

1.18 

(0.4) 

1.07 

(0.4) 

1.77 

(0.7) 

0.94 

(0.4) 

0.85 

(0.3) 

0.99 

(0.3) 

1.26 

(-0.4) 

1.27 

(0.7) 

1.54 

(1.0) 

Table 3: Unconstrained sample mean implausibility metrics and NMAEFs (in brackets) for N50. Implausibility metrics 

are shaded red for cases where the lower credible bound of implausibility metrics in the unconstrained sample is larger 

than I=1. 

 

 

Figure 3. Implausibility metric for N50 for a) February and b) July at all 13 locations. For each observation location 

the range of the distribution across the model variants is shown by the outer crosses, the black bar corresponds to the 

95% credible interval (2.5% to 97.5% empirical quantiles) and the small horizontal black lines within the bar show the 

inter-quartile range. The red circle corresponds to the mean and the blue square is the median. 
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13.5.3.2 Constraint of model uncertainty 

Figure 4 shows the unconstrained (prior) and constrained distributions of N3 and N50 averaged across the 

measurement locations in Europe.  The constraint rules out large parts of the prior range of the model 

variants. When we constrain the model using individual months of data the number of model variants is 

reduced by about 50%. When we constrain using all months of data the number of variants is reduced by 

around 85%.  

 

For N50, the mean over the European measurement sites (1, 2, 3, 4, 5, 6, 8, 9, 10 and 13 in table 1) is 1954 

cm-3. The model unconstrained mean is 3235 cm-3 (averaged across the sites and model variants) but after 

constraint this reduces to 2355 cm-3 – i.e., a reduction in the mean difference across the measurement sites 

by around 70%. The observed mean N50 in January is 1160 cm-3. The model unconstrained mean is 1648 

cm-3 and after constraint this reduces to 1063 cm-3, which is very close to the measurements and a reduction 

of 80% in the model-measurement bias. 

 

 

Figure 4. Prior and constrained model uncertainty distributions for N3 and N50 calculated across the European 

measurement locations. The black lines show the range of N3 and N50 of the 1 million model variants sampling the 

26 model uncertainties. The red line shows the distribution after observational constraint. The green line and shading 

shows the measurement mean and approximate uncertainty, which we assume is dominated by the representation error 

(see section 13.5.2.2). 

 

Figure 5 shows the 95% confidence range of the unconstrained and constrained samples of model variants. Over 

Europe the range is reduced substantially from about 50,000 cm-3 to 10,000 cm-3 for N3 and from about 10,000 cm-3  

to 3,000 cm-3 for N50. The ACTRIS measurements therefore strongly constrain our model uncertainty. 

 

Figure 6 shows that mean concentrations of N3 and N50 are substantially reduced across Europe, as expected from the 

probability distributions in Figure 4. The means concentrations are in much closer agreement with the measured values.    
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We also see that constraint using the small number of ACTRIS measurements helps to constrain the model uncertainty 

in other regions of the globe (Figure 7). We see reductions in the 95% confidence range for N50 mostly in polluted 

regions like N America and China, but also in marine regions affected by pollution outflow from these regions. The 

reductions in uncertainty, as well as the constrained values, would need to be evaluated against measurements in these 

locations. However, we expect many of the model uncertainties to be common to different regions (Lee, Reddington 

and Carslaw, 2016).  

 

 

Figure 5. 95% confidence range of the unconstrained (left) and constrained samples of model variants for N3 (top) and 

N50 (bottom).  

 

 

Figure 6. Mean N3 (top) and N50 (bottom) for the unconstrained (left) and constrained (right) samples of model 

variants. Measured particle concentrations are shown as dots. 
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Figure 7. 95% confidence range of the unconstrained (left) and constrained samples of model variants for N50. 

 

13.5.3.3 Constraint of model parameter ranges 

Figure 8 shows the constraint of the prior parameter ranges using the N3 measurements in January or July. 

There is a large difference in the parameters that are constrained because of different parameter sensitivities 

in different seasons. In winter there is only very weak constraint of any parameters. The emission of primary 

particulate sulfate is weakly constrained: the likelihood of the smallest emission diameters and largest 

emission fluxes of these sub-grid particles is reduced a small amount. These reductions suggests that the 

prior ranges were producing too many particles, so this part of parameter space has been ruled out as 

implausible.  

 

In summer, N3 measurements constrain a much wider range of parameters than in the winter. We see strong 

constraint of boundary layer nucleation rates (to the lower part of the prior range), the assumed pH of cloud 

water (to the upper range), anthropogenic SO2 emissions (lower range), BVOC emissions (upper range), 

dry deposition velocities of both Aitken and accumulation mode aerosol (lower range), and the assumed 

hygroscopicity of organic material (upper range). Some of these constraints are consistent with some prior 

model variants producing too many particles. Nucleation rates are reduced and sink terms of small particles 

are increased, such as deposition rates of particles that increase the condensation sink. High pH is also 

consistent with sulphate production by reaction with ozone, and the sulphate also acts as a sink for nucleated 

particles. 

 

Figure 9 compares the constraint caused by N3 and N50 over all months. For N50 we see very strong 

constraint of the diameter of primary carbonaceous and primary sulfate emitted particles, as well as the 

assumed diameter of the Aitken mode. Again, these constraints are consistent with the ruled-out parts of 

parameter space producing too many particles (larger particle diameters result in fewer emitted particles 

when the emitted mass flux is assumed constant). Boundary layer nucleation rates are also constrained to 

the lower part of the prior range, but the constraint is weaker than when using N3 measurements. This result 

(relatively weak constraint of nucleation rates but strong constraint of primary particle sizes) is fully 

consistent with the conclusion of earlier research (Reddington et al., 2011), which showed that evidence for 

the role of nucleation in controlling N50 particles concentrations in the European boundary layer was not 

statistically robust when the uncertainty in particle emission diameters was taken into account.  
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Figure 10 shows the overall constraint of parameters by applying N3 and N50 measurements at ACTRIS 

sites over all months. The overall conclusion is that we can rule out large parts of parameter space that 

generate too many particles. We therefore see strong constraint of nucleation rates, primary particle 

diameters and deposition rates of particles that control the condensation sink of nucleating vapours and 

growing particles. 

  

 

Figure 8. Constraint of model parameter ranges for two months (left, January; right, July) using N3 measurements 

only. The parameters are listed along the bottom of each figure. Each bar shows the normalised range of each parameter 

between 0 and 1 (see (Regayre et al., 2018) for a definition of each parameter and its expert-elicited range. The colour 

of each bar indicates the probability (yellow is a probability of 1, i.e. no constraint of the prior assumption, and blue 

indicates a reduction in the probability of that part of parameter space in the constrained sample of variants.  
 

 

 

Figure 9. Constraint of model parameter ranges using N3 measurements only (left) and N50 measurements only (right) 

for all months. The parameters are listed along the bottom of each figure. Each bar shows the normalised range of each 

parameter between 0 and 1 (see (Regayre et al., 2018) for a definition of each parameter and its expert-elicited range. 

The colour of each bar indicates the probability (yellow is a probability of 1, i.e. no constraint of the prior assumption, 

and blue indicates a reduction in the probability of that part of parameter space in the constrained sample of variants. 
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Figure 10. Constraint of model parameter ranges for using combined N3 and N50 measurements over all months. The 

parameters are listed along the bottom of each figure. Each bar shows the normalised range of each parameter between 

0 and 1 (see (Regayre et al., 2018) for a definition of each parameter and its expert-elicited range. The colour of each 

bar indicates the probability (yellow is a probability of 1, i.e. no constraint of the prior assumption, and blue indicates 

a reduction in the probability of that part of parameter space in the constrained sample of variants. 
 

13.5.3.4 Constraint of simulated aerosol forcing 

Our ultimate objective is to use aerosol measurements to reduce the uncertainty in model simulations of 

aerosol radiative forcing. Figure 11 shows that the aerosol radiative forcing over Europe and globally is only 

very weakly affected by the strong constraints on particle concentrations shown above. Over Europe there 

is a small shift on the most likely forcing to more negative values, but almost no change in the uncertainty. 

This effect is coming from a reduction in the number of particles in the constrained sample of variants 

combined with an increase in the probability of larger emitted primary particles. Clearly N3 and N50 

measurements alone are insufficient to constrain all relevant aspects of the aerosol size distribution, so in 

further work we would extend the analysis to other size cutoffs. However, the weak constraint we see here 

is consistent with our study in which we included nine different types of measurements, including aerosol 

optical depth, PM and top-of-atmosphere fluxes (Johnson et al., 2018).     

 

 
Figure 11. Unconstrained (black) and constrained (red) probability distributions of pre-industrial to present-day aerosol 

radiative forcing.  
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13.5.4 CONCLUSIONS 

 

Our analysis of a large perturbed parameter ensemble shows that ACTRIS aerosol microphysics 

measurements provide a powerful constraint on some uncertain parameters in a global aerosol model. We 

have been able to rule out about 85% of our prior sampled parameter space using just measurements of N3 

and N50 at 16 sites. Constraint leads to a reduction in model spread of about a factor of 3 for these simulated 

quantities and a strong sift in the mean distribution towards the measurements. These constraints also affect 

other (unmeasured) regions because we assume the parametric uncertainties are uniform globally, 

 

The measurements are most effective at constraining model parameters related to particle formation rates, 

the size of emitted primary pollutant particles and deposition rates.  

 

Constraint of aerosol forcing uncertainty is very weak using just these measurements. The strong constraints 

on N3 and N50 result in a small shift of the mean aerosol forcing over Europe to more negative values, but 

the uncertainty is not significantly affected. This result is consistent with our other work showing that even 

many more types of aerosol and in situ measurements are unlikely to be sufficient to constrain the forcings 

(Johnson et al., 2018).  

  

In order to constrain the forcing uncertainty further, it would be necessary to include measurements from a 

more diverse range of environments that represent both polluted and pristine (pre-industrial-like) conditions. 

In this study we used mainly ACTRIS measurements from Europe where the main sources of uncertainty 

(and hence the constrainable parameters) are related to anthropogenic emissions. We also propose to extend 

the analysis to more than N3 and N50 so that important changes in the size distribution can be constrained. 

We also argue that reduction in the recent decadal forcing may be easier than for the pre-industrial to 

present-day forcing because the parameters that control the recent forcing are more related to measurable 

quantities (Regayre et al., 2014). In this regard, measurements of long-term trends would be highly valuable 

as a constraint on models, which is something that ACTRIS can contribute to.  

 

Spatial representation error is a major source of uncertainty when constraining models. This important 

source of error may exceed the instrument uncertainty, so it should be a priority to characterize it for all 

measurement sites. This might be possible by conducting intensive campaign measurements around the 

ACTRIS sites, for example through carefully designed networks of well-characterised low-cost instruments 

on a routine basis. 
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